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One-dimensional wave equations in disordered media 
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t Centre de Physique ThCoriqueB, Ecole Polytechnique, 91 128 Palaiseau, France 
$ Laboratoire de Physique Thdorique, EPFL, CH-1001 Lausanne, Suisse 

Received 28 June 1982 

Abstract. We prove that several one-dimensional wave equations for electrons, phonons 
and light propagation have all their states or proper modes exponentially localised when 
the medium is disordered. Vanishing of the DC conductivity is obtained for models 
describing electronic motion. The exact spectrum of these models is also obtained 
explicitly. Bounds on the localisation length are exhibited in some cases. 

1. Introduction and statement of the results 

Wave propagation in random media is an old problem, which regained vitality from 
the ideas of localisation theory as developed by Anderson, Mott and many others. 
In this direction, efforts have been mainly devoted to the Schrodinger equation with 
a random potential or its discrete analogue-the Anderson model-although many 
other wave equations are interesting for applications in condensed matter physics, 
astronomy, waveguide theory, radars and sonars, etc. In this paper we are going to 
study some of the most important such equations and give mathematical proofs of 
some properties of their normal modes. 

Let n denote the points of the one-dimensional lattice Z. The various equations 
that we are interested in are the stationary equations or proper modes equations 
associated with the following operators which act on the space of square integrable 
sequences i2(2) = ( $ 1  znEZ/ 1/1(n)12< a): 

W1+)(n)=-d4 + l ) - + ( n  -1)+2+(n)+V(n)+(n)  (1.1) 
which corresponds to a discrete Schrodinger equation or an Anderson tight-binding 
model for evolution of electrons with diagonal disorder; 

(1.2) 
which corresponds to a tight-binding model for evolution of electrons with off -diagonal 
disorder ; 

(H2+)(n) = J ( n ,  n + l )+(n + l ) + J ( n ,  n - l)+(n - 1) 

(H3+)(n)  = J ( n ,  n + l)+(n + 1) + J ( n ,  n - 1)+(n - 1 ) +  V ( n ) + ( n )  (1.3) 
which is a tight-binding model for evolution of electrons with diagonal and off-diagonal 
disorder (operators H I  and H 2  are of course special cases of H 3 ) ;  

( H 4 + ) ( n ) = J ( n ,  n +l)$(n + l ) + J ( n ,  n - l )+(n  - l ) - ( J (n ,  n + l ) + J ( n ,  n - l ) )+(n)  
(1.4) 
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26 F Delyon, H Kunz a n d  B Souillard 

which corresponds to the evolution of phonons in harmonic crystals with random 
coupling forces; 

(HS$)(n)  = (H4$)(n)+ V ( n ) l L ( n )  (1.5) 

which does not seem to correspond to a specific problem, but which we shall need in 
our paper; 

(Hg$)(n)=(l/m(n))(-$(n +I)-IL(n -1)+2$(n))  (1.6) 

which is the discrete Helmholtz equation associated with light propagation or also the 
equation corresponding to phonon evolution in harmonic crystals with random masses. 

In all these equations we will always have J ( n ,  n + 1) = J ( n  + 1, n )  and the V ( n ) ,  
J ( n ,  n + l ) ,  m ( n ) ,  n E Z will be independent random variables with distributions 
denoted r, p and s respectively. We will always suppose 1 lJ lp(dJ)  < 00. For equations 
HI, H s  and H5, r will be supposed to be an absolutely continuous distribution, whose 
density, also denoted by r, will satisfy Ilrllp; < 00 and (1 + i x l ) r (x )  E Lz .  For equation 
H1, in theorem 3, we will furthermore add to such a V ( n )  an arbitrary given potential, 
for example a quasi-periodic one. For equations HZ and H4, p will be supposed to 
be absolutely continuous with density, also denoted p ,  satisfying (1 + J 2 ) p ( J )  < 03, and 
also in the case H z ,  p ( J )  = 0 when /JI < E .  For equation H6, the distribution s will be 
supposed absolutely continuous, with density s satisfying (1 + l /m2)s(m)  < 00. 

Operators HI to H5 are symmetric, and when all J and V are bounded uniformly 
with respect to n, they are bounded operators and hence self-adjoint. In the case of 
unbounded sequences of J or V, it is easy to check that they still define self-adjoint 
operators, although they are unbounded ones, and that the set of 4 with $(n)=O 
except for a finite number of n is a common core for them. The operator H6, on the 
other hand, is not a symmetric operator as it stands; however, choosing new functions 
~ ( n )  = (m(n))’”IL(n), or in other words taking the new scalar product ($1, GZ) = 
CnoZ m ( n ) $ f  (n)$Z(n) for our Hilbert space, we obtain a self-adjoint operator. 

The previous mathematical results concerning the normal modes of such operators, 
or in other words their spectral properties, are the following, all stated with probability 
one. First was proved the absence of an absolutely continuous spectrum for the 
operator H6 on the half-line (Casher and Lebowitz 1971), and for HI on the whole 
line (Pastur 1974, 1980). The idea of the proof by Pastur together with the results 
on the Lyapunov exponents for random products of matrices (Guivarc’h 1981, Ledrap- 
pier and Royer 1980) allow us to obtain now the absence of an absolutely continuous 
spectrum for a large class of one-dimensional problems. Secondly, the proof has been 
obtained that a continuous Schrodinger equation with a random potential, or its 
discrete analogue HI, has all its states exponentially localised (Golds’heid et a1 1977, 
Molcanov 1978, Kunz and Souillard 1980, Carmona 1982, Royer 1982). The same 
results have been obtained for a large class of random second-order difference 
equations, including operators HI to H 6  by Lacroix (1981). Analogous results for 
the analogue of HI in a strip have been announced by Golds’heid (1980). Proof of 
an Anderson transition-namely a transition from pure point spectrum to absolutely 
continuous spectrum when the energy or the disorder is varied-for problem HI on 
a Bethe lattice has been announced (Kunz and Souillard 1981). Finally, concerning 
transport properties in one dimension, non-validity of Fourier’s law for heat transfer 
has been proved for model H6 (Casher and Lebowitz 1971) and vanishing of the 
electrical DC conductivity for model HI (Kunz and Souillard 1980). 
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In Kunz and Souillard (1980) a general formalism was developed to tackle such 
problems and we rely on it heavily in the present paper, where we introduce a variation 
on the proof of localisation achieved there. This variation is closely related to the 
independent work of Lacroix (1981), although we have not completely cleared up the 
links, and the conditions of applications are not exactly the same; it both makes 
possible a much simpler proof of localisation and allows us to extend it to a much 
larger class of systems (theorem 2) than the proof of Kunz and Souillard (1980). 
Furthermore, from this approach we can derive in the case of H I  an upper bound 
on the localisation length and also prove that a Hamiltonian of type H1 with a fixed 
potential, for example a quasi-periodic one, perturbed by a random potential again 
has all its states localised (theorem 3); these last results are, to our knowledge, the 
first in these directions. 

We first mention the following theorem, giving the exact spectrum of the previous 
operators. We use the following notations: if A and B are two sets of real numbers, 
A + B  is the set of numbers a + b  for a E A  and 6 EB, A 9 B the set of numbers a b 
for a E A  and b E B, and A-' the set of numbers a-l  for a E A .  For the distributions 
r, p and s we let Supp denote the support of the distribution, i.e. for example Supp 
r is thesetof  VosuchthatProb{VEIVo-&, V o + ~ ] ) > 0 f o r a n y e > 0 .  

Remarks. We shall not prove this result here. The case (1) has been proved in Kunz 
and Souillard (1980), and the other cases can be handled in the same spirit. These 
results hold even if the distributions of variables V, J ,  m are not absolutely continuous, 
for example are discrete distributions. They hold too for a very large class of stochastic 
processes, where the variables V, J,  m are not independent from site to site. Analogous 
results hold for the corresponding equations in dimension d larger than 1; it is then 
sufficient to replace 2 by 2d and 4 by 4d.  For all these extensions we refer to the 
results and techniques of 0 111 of Kunz and Souillard (1980). 

We turn now to our results on the nature of the proper modes of equations (1)-(6) 
and to related results. The hypotheses on the distributions r, p and s have been stated 
above. 

Theorem 2. The operators H I  to H6 have, with probability one, a pure point spectrum 
with exponentially decaying eigenfunctions, i.e. all their states are exponentially 
localised and satisfy for any bounded interval A (not containing 0 for cases 2 ,4 ,  6) 

where the sum runs over all eigenvalues e of the operator in the interval A and 4, 
is the corresponding normalised eigenfunction, the brackets denoting the average over 
the disorder. 



28 F Delyon, H Kunz and B Souillard 

For operators H I  to H3 describing the motion of electrons, the static conductivity 
at zero temperature is null for any Fermi level EF, except possibly for EF = 0 in the 
case of H2.  

meorem 3. For the operator HI, the bound (1.7) is furthermore satisfied with A = R 
and the localisation length satisfies the uniform bound 

where a (77) = 1 - SuplW~>,, l i (w) I  and ?(U)  is the Fourier transform of r. 

previous results hold also if one adds to H1 an arbitrary given potential. 
In this case the static electric conductivity is zero for any temperature. All the 

Comments 
(i) All these results also hold if the operators H I  to H6 are obtained as infinite 

volume limits of the analogous operators in finite boxes with boundary conditions 
such as free boundaries, periodic or antiperiodic boundaries, because such operators 
in finite boxes converge strongly in the resolvent sense toward the operators H I  to 
H6. They hold too for the operators on the semi-axis. 

(ii) The localisation length diverges at e = 0 for the operators H2, H4 and H6. For 
H4 and H6 this corresponds to the fact that 4 ( n )  = 1 is a solution of H$ =e$ for 
e = 0. In the case of H2,  it was sometimes claimed thJt H2$ = e$ possesses a localised 
state for e = 0 with an envelope decaying as exp(-dn); but it is a simple consequence 
of the law of the iterated logarithm to check that the solution of H2$ = 0 is almost 
surely unbounded on both sides. In the three cases H2,  H4 and H6 one ought not to 
consider, however, that there exists an extended state at e = 0 :  extended states can 
have a physical meaning only if they form a continuum. 

(iii) The operator H4 is also the generator of a classical random walk in a one- 
dimensional random environment. It is known (Anshelevitch and Vologodskii 198 1) 
that such a random walk has a usual diffusion behaviour with some appropriate 
diffusion constant, although the operator H4 has all its proper modes localised. This 
phenomenon is crucially linked to the divergence of the localisation length at e = 0 
in this case. 

(iv) We remark that there exist problems with off-diagonal disorder which are 
equivalent to purely ordered systems: consider for example model H2 on the half-line 
n 3 0  with variables J taking only values -a and +a with respective probabilities p 
and 1 - p .  Consider then the eigenmode equation 

J ( n ,  n + 1)(1(n + 1) + J ( n ,  n - l )+(n - 1) = eG(n) ,  
and let 

. . .  J ( n ,  n -1) J ( n  -2 ,  n -3 )  
a ( n  + 1) = 

J ( n ,  n + 1) J ( n  - 1, n -2) 

i.e. a ( n  + 1) is such that a ( n  - l ) J (n ,  n - 1) = a ( n  + l )J((n,  n + 1). Hence, in the vari- 
ables O(n) = $ ( n ) / a ( n ) ,  the proper mode equation becomes O(n - 1) + O(n + 1) = 
ew (n)O (n ), where 

1 J ( n - 1 , n - 2 ) 2  
w ( n )  = 2 ' "  ~ ( n ,  n - 1)' J ( n  - 2, n - 3) 
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and so w ( n )  is constant. Indeed such a model does not satisfy the hypothesis of our 
theorem 2. 

(v) The upper bound (1.8) on the localisation length is to our knowledge the first 
one to be established. One should notice that this bound is a uniform one in the 
whole spectrum, One may wonder if this bound is a good one, and the answer is 
positive. Of course, the bound is not an exact estimation of the true localisation 
length: it is a strict upper bound to the length governing the decay of the function 
P(n, n ' )  which could be taken as one definition of the localisation length. This latter 
length can be shown to be itself strictly larger than the inverse of the Lyapunov 
exponent which governs the rate of decay of the eigenfunctions (Carmona 1982), and 
which yields another definition of the localisation length. However, in the limit of 
small disorder, we have checked-at least for specific examples-that our upper bound 
(1.8) and the inverse of the Lyapunov exponent have the same scaling behaviour: this 
can be achieved, for example, in the Anderson model for which one has a rectangular 
distribution with width W for the diagonal disorder, and for which the Lyapunov 
exponent can be computed from the Herbert and Jones formula (1971), plotting in 
then a second-order approximation for small W of the density of states. 

In § 2, we introduce some basic ideas for the proof of localisation, and we then 
give the framework of the proof of theorem 2. In D 3, we give the technical part of 
the proof of theorem 2. In § 4 we derive the results of theorem 3. The results on 
the electrical conductivity stated in theorems 2 and 3 follow respectively through 
theorems V.4 and V.2 of Kunz and Souillard (1980) together with the results of the 
present 09 2-4. 

2. An approach to the localisation problem 

Following Kunz and Souillard (1980) (to be denoted by KS in the following) we denote 
by p H ( n ,  m ; dA) for a given Hamiltonian H the absolute value of the spectral measure 
EH(dA) between the sites n and m, that is 

where 8, is the function which takes the value 1 at the site n and 0 at the other sites. 
In this paper all our Hamiltonians depend on some disorder and p f i  (n ,  m ; dA ) denotes 
the average of pH(n, m ;  dA) with respect to the disorder. In the same way p &  and P t  
denote the same quantities associated with the problem in a finite box A with given 
boundary conditions. In this case, if all the eigenvalues are non-degenerate p &  is 
given by 

where 
the eigenvalue A and where the sum runs over all the eigenvalues in A. 

is the normalised eigenfunction of the Hamiltonian H A  corresponding to 

It is proved that if 

lim p:(n, m ; A ) s c ( A )  exp[-x(A)In - m l ]  (2.3) 

with x(A) strictly positive, then with probability one (with respect to the disorder) 
the spectrum of H in A is pure point with the eigenfunctions exponentially localised. 

A 7 2  
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Now we are going to give an empirical derivation of formula (2.11) below, for p t ;  
we refer to KS, § VI for details and a rigorous derivation. We consider here the case 
where the disorder contains a random potential with absolutely continuous distribution 
(cases H 1 ,  H3 ,  Hs) ,  for which the change of variable (2.5) is judicious and leads to 
the formula (2.11) where p t  is expressed just as an integral. The other cases will be 
treated later in the same section. In order to unify the notations we shall denote by 
H,, the element of matrices of the Hamiltonians between the sites n and m excluding 
the part due to the potential. 

Let us consider a box A = [ - M , N ]  and the boundary conditions (L ( -M- l )=  
$(N + 1) = 0 for the Hamiltonian restricted to A, Then following KS, the average of 

over the diagonal disorder is by definition equal to 

(&n, n ' ; A ) ) v  = n r(Vm) dVm C I ( L A ( ~ ) ( L A ( ~ ' ) I -  (2.4) 
m s A  AEA 

We use the change of variables 

a m  = (L(m)/(L(O) 
and 

(A, a m ) e  Vm = (ha,  - E m ,  Hmmcam,)/am. 

Using the normalisation of GI, we get 

(2.5) 

and (2.4) becomes 

where J (  V ;  A, a )  is the Jacobian of the change of variables. This Jacobian can be 
computed using theorem VI.l of KS and the fact that in our cases the only off-diagonal 
terms of the Hamiltonians are Hmm*l, so 

which gives us 

Now for the sake of simplicity, let us suppose 0 = n < n ' and for all m # 0, let us set 

y m  = a m - l / a m  

Y m  = a m + l / a m  if - M s m < O .  

if O<m G N  
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Clearly 

Then (2.9) becomes 

Hmm 

(2.10) 

(2.11) 

where rm(x) stands for r(x -Hmm). 
As in the introduction, Hmm+l is now denoted by -Jmm+l. Thus Hmm equals 2 for 

the Hamiltonian H1, 0 for H3 and Jmm+’ +Jmm-l for H5. We suppose that Jmmtl are 
independent random variables with identical distribution dpJ. So, p ;  is obtained by 
averaging ( p & ) v  over the remaining off-diagonal disorder, that is 

(2.12) 

The case of the Hamiltonian H1 may be considered as a special case of H5 where the 
probability dpJ is a delta function at the value 1. 

Our approach differs now from that of KS. We introduce the two operators To 
and T1 whose kernels with respect to the measure (J1 dpJ dx are given by 

To(x‘, J’Ix, J) = r(A +J’x +Jx-‘) Tl(x’,J’lx, J) = r(A +J’x’+Jx-’)lx1 (2.13) 

for the Hamiltonian H3 and 

To(x’J’IxJ) = r(A +J ’x ’+Jx - ’ - J ’ - J )  Tl(x‘J’lxJ) = r(A +J’x’+Jx-’-J’-J) / Ixi  

(2.14) 

for the Hamiltonian H5. In terms of these operators, a simple calculation gives us 

F(x,  J )  = r(A +JX) IJ’l dpJ, in the electronic case (H3) I 
and 

F(x, J )  = I r(A +Jx -J’)lJ’l dpJ,  (2.16) 

In this final expression for p t  the dependence on A is contained in the definition of 
To, TI  and F. Finally, let us remark that in all our cases To and T1 can be considered 

in the phononic case (H5).  
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as operators acting only on one variable: for instance, in the ‘electronic case’ all the 
functions are of the form F(x, J )  = f(xJ), thus 

(ToF)(J, x)  = r (A  +Jx +J‘x’-l)f(J’x’)iJ’I dpJc dx’= g(Jx) (2.17) J 
or equivalently 

g(x)=  J r ( A  + X  +J2x’-l) dpJf(X’) dx’. (2.18) 

(2.19) 

where 

h(x) = I r ( A  +X +J2X’-1)(lJI/IX’I) dpjf(X’) dx’. (2.20) 

Thus, from now on, in the case of H 3  we will use To and T1 as operators with kernels 

T o ( X l X ’ ) =  r ( A  +X +JzX’-’) dpj (2.21) J 
Tl(xIx’)= J r ( A  + X  +JZx’-’)(IJl/lx’l) dpJ. (2.22) 

With these new notations (2.15) becomes 

p ; ( O ,  n’; A )  = J ( T ~ ’ - ’ T ~ - ” f ) ( x ) J x I - ’ ( T ~ f ) ( x - ’ )  dx (2.23) 

where f(x) is now equal to r(A +x)(/JI) where the brackets denote the average. In a 
similar way, for the phononic case all the functions F(x,  J )  factorise as f (J(x - 1)) and 
p ;  satisfies again the equation (2.23) with To, T I  and f given by 

(2.24) 
f ( X ) =  I r (A  +X -J)IJI dFJ. 

We have now the final expression for p ;  in the case of H 1 ,  H3,  H 5 .  Let us treat now 
the case of H Z ,  H4 and H6. 

2.1. Case of pure off-diagonal disorder: H2 and H4 

Until now we have only considered the case of the Hamiltonians H I ,  H3 and H5.  The 
reason is that we have presented a formal calculation to obtain the expression (2.23) 
for p t .  This formal calculation is made rigorous by the results of KS, § VI in the case 
of H1, H3 and H5, that is, if the Hamiltonian contains a random potential with an 
absolutely continuous distribution. However, we would like to use again the formula 
(2.23) in the case of Hamiltonians H z ,  H4 by taking in the definition of To, T1 and f 
a delta function at zero instead of the function r. 
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Let us consider a Hamiltonian H &  (of type HZ or H4) in a box A and a sequence 
of random potentials V t  ; for instance, let us take potentials V i  independent on each 
site, with a density oi probability r, defined on a small interval around zero whose 
length goes to zero as n goes to infinity. Let us set 

ff; (J) = H;, + v;. 
Then If: (J) -* H*(J)  in norm, and thus using the convergence of spectral measures 
and Fatou's lemma, 

(2.25) 

where A is an open set and the angle brackets denote the average over the random 
potential. We can average (2.25) over the off-diagonal disorder to get, once more 
using Fatou's lemma, 

(2.26) 

For any finite n ,  the average on the right-hand side is given in terms of the previous 
expression (2.23); now we would like to take the limit n +CO inside the integral, that 
is to use directly the delta functions instead of the functions r,. This can be done as 
follows as soon as the hypotheses of theorem 2 are satisfied and A is different from 0. 

In this situation dpl has to be absolutely continuous and we may assume at first 
that its density P ( J )  is continuous. By a suitable limit procedure the results will remain 
valid for any P ( J ) ,  possibly not continuous, satisfying the hypotheses of theorem 2. 
Since the box 11 is finite, we may take the limit where the potential goes to zero site 
by site. Thus, beginning with the site N ,  we see that f ( r , )  goes to f(S) which is a delta 
function in the worst case (H2) .  The average (IJI) is always assumed to be finite and 
for simplicity will be set equal to one. Then the f ( r n )  have to be considered as the 
densities of a sequence of probabilities converging weakly to a probability formally 
defined by f(8). Then since P ( J )  is continuous, To(x1x') is continuous with respect to 
x ' and thus 

(To(r)f(r,, ))(x 1 + (Tdr )f(S ))(x 1 almost everywhere 

as n goes to infinity. Moreover 

(To( r , , ) f (S ) ) ( x )  dx = (To(S)f(S))(x) dx = 1 

and 
( T o ( r , ) f ( S ) ) ( x )  + ( T o ( S ) f ( S ) ) ( x )  almost everywhere. 

Thus T o ( r ) f ( S )  is a sequence of convergent mass-preserving densities of probability 
and this ensures their convergence in L' toward T o ( S ) f ( S ) .  Repeating this argument 
site by site, we get the same result with T," instead of To. Later, in 0 3, we will prove 
that Tk (S)f(S) is uniformly in L" as soon as k 3 2 and A # 0; as a matter of fact, it 
is easy to check that the same result holds if Tok(S) is replaced by a product of k 
operators To(S) associated with k different non-zero values of A. This implies that 
T," (r , ) f (S)  also satisfy uniform bounds when A is non-zero and n large enough if one 
makes the following remarks: firstly To(rn) associated with the value parameter A. is 
an average of a product of operators To(S) associated with the parameter A ranging 
in the interval A O  + support {r,,}, and secondly this interval does not contain zero when 
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n is large enough. These uniform bounds together with the L1 convergence ensure 
the convergence in L2 norm. 

Now let us remark that the operator U defined by 

( U f ) ( x )  = l x l - l f ( 1 / x )  (2 .27 )  

is an isometry in L 2 .  Then using in (2 .25)  the convergence in L 2  for T y f  and T:-"'f, 
it is now sufficient to prove the norm convergence of Tl(rn) to T1(S) as n goes to 
infinity. But IlTl(S)l12 is smaller than or equal to one by the Schwarz inequality and 

T l ( r ) f = r  * Tl(S)f.  
Thus 

llTi(rn) - Ti(S)ll2 = SUP ll(Ti(rn) - Ti(S))fll2 SUP llg - r" * g112 
Ilfll= 1 llgll= 1 

which goes to zero as rn goes to a delta function. This ends the proof, showing that 
for H2 and H4 we can use (2 .23)  with r a delta function in order to get upper bounds 
of the kind (2 .3 )  on the associated functions. 

2.2. Phonons with random masses: H6 

In order to solve the discrete Helmholtz problem H6, we prove that this case is equivalent 
to the case of the operator H4. Let us consider a phononic Hamiltonian H4 in a finite 
box [0, NI as before, except that we now set Jo-1 = JN,N+1= 0. The equations for an 
eigenvector cp associated with the eigenvalue e are 

-JoI($I - $0) = e$o 

-Jnn + 1 ( $ n + l -  (/In) - J n n - l ( G n - 1 -  $ n )  = e$, n E [ l ,  N - 13 (2 .28 )  

-JNN - 1 ($N - 1 - $N ) e$N. 
Let us set 

on = J n n + l ( $ n + l - ( C l n )  O c n s N - 1 .  

Then these equations become for 8,  by subtraction 

-e1 +Do = ef30/Jol 

- 8 , + 1 - 8 , - i + 2 8 ~  =een/Jnn+i l s n s N - 2  

-0N-2 + 28N-1 = e@N-I/J"-1. 

(2 .29)  

Remark 
Clearly, we have now only N equations and N variables 8, (0 s n s N - l), and this 
system is not equivalent to the previous one. The reason is that we have suppressed 
the solution t,b constant which is always an eigenvector associated with the eigenvalue 
0 and corresponds to 8 = 0. Thus any solution of (2 .28)  for a non-zero energy 
corresponds to a solution of (2.291, and conversely given a solution On, we have only 
one solution 4 orthogonal to the constant solution, that is a solution of 

C c L n = O  J n n + l ( $ n + l -  4 , )  = en. 

Now the system (2 .29)  corresponds to the Hamiltonian H6 with empty boundary 
condition. Moreover, the boundary conditions J o - ~  =J"+I = 0 are not significant in 
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the thermodynamic limit and the results obtained for H4 may be used in the case of 
Ha. For instance, exponential decay for i,b yields at least the same exponential decay 
for 8. Thus all the localisation results obtained in the phononic case H4 can be 
translated in the discrete Helmoltz case taking l / m ,  instead of Jnn+l. 

We can turn now to the proof of the exponential localisation. 

3. Proof of exponential localisation 

Sketch of the proof 

First, by the Schwarz inequality the equation (2.23) yields 

This inequality follows from the fact that the operator U defined by (2.27) is an 
isometry. 

Now we see clearly that if we could prove that on the one hand IIT:fl12 is uniformly 
bounded in n and that on the other hand the spectral radius of T1 in L2(dx) is strictly 
smaller than 1, then we would get 

Moreover, it is not difficult to prove that in our various cases x(A) and C(A) are 
continuous functions of A (this technical point follows easily from the inequalities 
appearing in the proof below). Thus for any closed interval A (such that for all A in 
A (3.2) holds) we conclude the existence of a x (A)  strictly positive such that 

lim p t ( 0 ,  n ; A ) s C ’ ( A )  exp-[~(A)lnI].  
A f Z  

More precisely, the outline of the proof will be as follows. 

The functions f appearing in (2.23) have L’ norm equal to (IJI). Since for all To 
( 1 )  Thermodynamic Zimit 

5 To(xIx’) dx = 1 (3.3) 

and To positive, ~ ~ T ~ f ~ ~ l  is less than or equal to ( / J I )  by induction for all n. Hence it 
is now sufficient to find a uniform bound on (TGf)(x) to get a bound on \[TGfll~ uniform 
in n. That will be the first technical point to prove. 

By the Schwarz inequality one can see that llTlllz cannot be greater than one, so the 
spectral radius of TI can be at most equal to one. In order to prove that the radius 
is strictly smaller than one, the first step will be to show that T: is a compact operator. 
This point is necessary because Tl is in fact of norm equal to one and thus otherwise 
it would be very difficult to conclude. 

Now T:  is compact so its spectrum is discrete and T1 is of norm smaller than or equal 
to one. Let us suppose that the spectral radius of T I  is one; then there would exist 
a function g in L2 such that 

(2) Compactness of some power of TI 

(3) Spectral radius of T1 

T:g = g  
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and so 

IITlglIZ s llgllz = l1T:gIlz s llTlgIl2. 

IlT1gll2 = llg112. (3.4) 

So we get 

But we will show that this equality cannot be satisfied by any function g in L2.  This 
contradicts the hypothesis and thus the spectral radius of TI  is strictly smaller than one. 

3.1. Thermodynamic limit 

First we have to take the thermodynamic limit. In our case this means showing that 
IIT:fl12 is uniformly bounded over n. We do not give the proof in all cases, and we 
restrict ourselves to the electronic case with random potential (H3) and the pure 
phononic case (H4) .  The other cases are similar and we have stated the results in the 
introduction. 

3.1.1. Electronic case (H3). As we said previously, since llT:fl/~ equals (IJI), it is 
sufficient to prove that IIT;ffllm is uniformly bounded for n sufficiently large. The 
result is obvious as soon as r ( x )  is bounded since 

IlGflla = sup 11 r ( A  + X  + J2x ' - ' )  dp,(G-'f)(x ')  dx'l s IIrIIaIIT6-'fIIi = IIrIIm(IJI). (3.5) 

3.1.2. Pure phononic case (H4). The operators TO and TI have positive kernels and 
thus all the norms can be evaluated with positive functions. From now f will denote 
a positive function. Here r ( x )  is not a function but a delta distribution and To can 
be rewritten as 

X 

Then 

(3.7) 

which gives a suitable bound for all x outside a neighbourhood of -A. Now as x goes 
to -A using this preliminary result, we can get a bound for T: f: 

(3.9) 

(3.10) 
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Now the two remaining integrals are well defined and continuous with respect to A + x  
as A + x  goes to zero, as soon as A is not zero. It is easy to check that 

( 3 . 1 1 )  

and thus T$f is uniformly bounded. 

than two. 
Since llTo”flll equals ( I J / )  for all n ,  this bound is valid for T,”f as soon as n is larger 

R e m a r k  
In order to get ( 3 . 1 0 )  and ( 3 . 1 1 ) ,  we have only used in ( 3 . 8 )  the decay at infinity of 
Tof(x) .  Hence, if the second operator To is associated with a parameter value A 
different from that of the first one, the conclusion remains valid. This was necessary 
in 3 2 in order to ensure the thermodynamic limit in the case of the pure off-diagonal 
disorder. 

3.2. Compactness  

As we said before, we have to prove that some power of the operator T1 is compact 
(generally T1 itself is not compact). In order to do so we use Riesz’s criterion, that 
is, T is compact if: 

(a) Tf + 0 in the L2 sense at infinity uniformly for f in the unit ball of L 2 ;  
(b) limh.+o ( T f ( x  + h )  - T f ( x ) ) ’  dx = 0 uniformly for f in the unit ball. 

3.2.1. Electronic case 

( 3 . 1 2 )  

(3.13) 

r is assumed to be in L 2 ;  let us set / l r l l z=C.  Therefore using this bound and the 
Schwarz inequality, we get 

( 3 . 1 4 )  

51 r ( A + x + x ’ ) - C ( l J l ) + ( [  dx’ r * ( A + x + x ’ ) d x ’ )  1 / 2  . ( 3 . 1 5 )  

x ’ l > ! x , / 2  / X I /  I X ’ l ~ 1 X 1 / 2  

In the last inequality we omit l l f l l ~  and llTlf(I2, since I l f l [ 2  equals one and T1 has a norm 
less than one. Now the first term on the right-hand side is bounded by 2 C ( I J ( ) / l x l  
and the second term will have an equivalent bound if, say, / x \ r ( x )  belongs to L2.  Thus 
if (1 + l x \ ) r ( x )  belongs to L 2  and ( l J ( )  is finite, T:f goes to zero at infinity as l / x  and 
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the property (a) is satisfied for T:. The property (b) is satisfied if, for instance, (a) is 
satisfied and ( T : f ) ( x  + h )  goes to ( T : f ) ( x )  uniformly in x and in f with norm one. 
This is easy to check since 

I ( T i f ) ( x  + h 1 - (Ti f) ( x  )I 
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= I (  [ r ( A  +x+h+J’x’-’)-r(h + x + J ’ ~ ’ - ~ ) ] _ ; f ( x ’ ) d x ’ d ~ ~ l  I J l  
lx I 

(3.16) 

This inequality is obtained by the Schwarz inequality, using that l l f l l z  equals one. 
Moreover, this term goes to zero with h as soon as r belongs to L’. Thus if ( /J I )  is 
finite and (1 + Ix / )r(x)  belongs to L’, the operator T: is compact for all A .  

3.2.2. Pure phononic case (H4) 

(a) T1 f + 0 in the L’ sense at infinity: 

( T l f ) ( x )  = S A + x  +--J)&P(J) J 2  dJf(x‘) dx’ I ( x + J  

Thus 

(3.17) 

(3.18) 

and the result follows from the integrability of J’P’(J) which is satisfied because we 
have supposed J P ( J )  bounded and in L’. 

(b) Now we check the property (b) for the operator T: and since (a) holds, we 
have only to prove 

lim Jl ( (T: f ) (x  + h ) - - ( T ? f ) ( x ) ) ’ d x  = O  
h - o  xI<R 

(3.19) 

uniformly for f in the unit ball. This occurs for all non-zero A since ( T : f ) ( x  + h )  goes 
to ( T : f ) ( x )  uniformly in f and x outside a neighbourhood of -A and since ( T : f ) ( x )  
is uniformly bounded in this neighbourhood of -A. Indeed, 

(3.20) 
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which implies together with (3.8) that ( T : f ) ( x )  is uniformly bounded. Now the 
continuity of ( T : f ) ( x )  is obtained as follows: 

( T : f ) ( x  + h )  - ( T : f ) ( x )  

I J I  
J ( A  + x )  
J - A  - X  

(3.22) 

where J‘ is the solution of the equation 

J’(A + x  + h )  - J ( A  + x )  
J ’ - A - x - h - J - A - x ’  

Then 

(3.23) 

(3.24) 

It is easy to check that the last factor goes to zero with h as soon as JP(J)  is in L2,  
and that A + x  is different from zero. Thus ( T : f ) ( x  + h )  goes uniformly to ( T : f ) ( x )  
provided that A + X  is not zero. 

This ends the proof and tells us that T: is compact as long as A is different from 
zero, P ( J )  bounded and J P ( J )  in L2.  

3.3. The spectral radius 

3.3.1. Electronic case. Let us suppose that the spectral radius is one. Then as we 
said before, by compactness there exists a function f in Lz  such that 

llTlfll2 = l i f l l z  
where 

( T l f ) ( x )  = 5 r ( A  + x  + J z x ‘ - l ) ( ~ J \ / \ x ’ ~ )  d p J f ( x ’ )  dx’ 

= 1 r ( A  + x  + J Z x ‘ ) ( l J l / l x ’ l ) f ( x ’ - ’ )  dx’ dw,. 

Since \ l i x \ - l f ( l / x ) l l ~  is equal to Ilfllz, there must exist a function g such that 

Ilgliz = IlTklIz 
where 

( T ; g ) ( x )  = r(A + x  + J z x ’ ) l J l g ( x ’ )  dx’ dpJ I 

(3.25) 

(3.26) 

(3.27) 
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which becomes by Fourier transform 

By the Schwarz inequality 

Hence (2.26) cannot be satisfied since /?&)I is strictly smaller than one for all non-zero 
k .  Thus if Tf is compact its spectral radius is strictly smaller than one. 

3.3.2. Pure phononic case. We proceed as in the previous case. But now Ti becomes 

(3.30) 

Then 

= 5 f ( x  - l / J ) f ( x  - l/J’) dx P(J)P(J’ )  d J  d J ’  

I l f l l z .  (3.32) 

The last inequality is obtained by the Schwarz inequality; hence the equality holds if 
and only if f ( x  - 1/J) is equal to f i x  - l/J‘) dx 0 dpJ 0 dkl almost everywhere. Since 
dpJ is absolutely continuous, f (x)  has to be constant almost everywhere and thus 
cannot be in L2.  

4. Localisation length 

Let Kv and U denote the following operators acting on L2 functions: 

U is an isometry from L 2  to L 2 .  The operator T I  of §§ 2, 3 associated with the case 
of the tight-binding Hamiltonian with diagonal disorder H1 is nothing but UKo. As 
a matter of fact, if one adds a given potential V to H I ,  it is easy to check that a bound 
of type (3.1) remains valid with TY replaced by II;:’o T l ( V ( m ) )  with T l ( V ( m ) ) =  
KV(,)U. The results of theorem 3 will be obtained as soon as we have proved that 
for all V and V’ 
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for all q such that 40q /log q I < 1 and where 

c Y ( 7 J )  = 1 - sup l?(w)l 
l & v  

(4.2) 

and ? ( w )  is the Fourier transform of T.  

As a matter of fact, it will be easier to work in Fourier space, so we will consider 
normalised L2 functions f ( w ) ,  llfil= (I lf(w)I2 do)’” = 1, and we will decompose f as 
fl +f2 where fl (resp f 2 )  is zero for Iw 1 < q (resp 10 1 > 7); fl and f 2  will be the Fourier 
transforms of fl and f 2  in x space. Then we have 

(flKoUKolf) = (flIKOUKOlf1) + ~ ~ f l I ~ o ~ ~ o l f 2 ~ + ~ f 2 l ~ o U ~ o l f 2 ~  (4.3) 

and the following inequalities will be proven below for q < e - ’ :  

l ( f 2 1 K O ~ ~ O l f 2 ) l  s llf21I2. (4.6) 

I (~ IK~UK~I~ ) I  s 4oq 11n I + 311f~ i i .  (4.7) 

I ( f l K o ~ ~ 0 l f ) l  1 -~(77) l l f2 l l2.  (4.8) 

Then from (4.7) and (4.8) we can derive that for all q satisfying 40.11 Iln q I < 1, we have 

Admitting these inequalities, we obtain through (4.3), for q <e-’ ,  

On the other hand, we see directly that 

I ( f l ~ o ~ ~ o I f ) l  s SUP infU -a (q)IIf2112, 4071 Iln 7 I + 3 l M )  
f, I If(x)l2 dx = 1  

~ l - & a ( q ) ( 1 - 4 0 q I l n q ) ) ~ .  (4.9) 

Hence the proof will be closed with the demonstration of the inequalities (4.4-4.6). 
Inequalities (4.5) and (4.6) are direct consequences of the fact that U is unitary, 
hence l(gIKoUKolh)l s IIKogJJIIKohll for all g and hL2 functions, and that IIKogJI s Ilg(( 
as a consequence of the fact that [?(U)\ s 1 for all w .  

So we are now left to prove (4.4), which is the important point. We have 

\(flIKoUKolfl)l= 11 dw dw’f(w)F(w)G(w, w’)f’(w’)&’)/ (4.10) 

with 

(4.11) 

(G appears not to be well defined because of the \X I - ’  factor. However, one may 
restrict from the beginning the integrations to E S Ix I S A  and afterwards let 1 / e  and 
A tend to infinity. The limits can be handled if one notes that all our norm estimations 
need only to be worked out with functions f such that lfrl is integrable in addition to 
being square integrable.) Now G(w, w ‘ )  satisfies the following bound for Iww’I < 1: 

/ G ( w ,  U ’ ) \  G -2 lnlww’I+ 10. (4.12) 

This bound is derived in a straightforward way from (4.11) by considering variables 
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cp such as e* = x ( l w / ~ ’ l ) ’ ’ ~  and then displacing the line of integration of the variable 
cp on R of *i1r/2 for cp positive or negative and according to the signs of w and U ’ .  

From (4.12) and (4.10) and the fact that Ir ‘ (w))  s 1, it follows that 

I(flIKoUKdfd~ lo(/  Ifl(w)l dw) +4( /  I f ~ ( w ) l  dw)( / I f ~ ( w )  In wI dw) 

but through the Schwarz inequality we have 
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2 

(4.13) 

(4.14) 

and I I f i ( w )  In w dw sJ2[77 In2 77 +277(1-1n 77)]1’2(1 - l l f 2 1 / 2 ) 1 ’ 2 .  (4.15) 

Using (4.14) and (4.15) into (4.13), we then obtain readily (4.4) for 77 <e - ’ .  
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